NASA TN D-193

NASA TN D-193

e o—

{NASA-TN-D-193)
NONLINEAR P o Langley
THE PITCH-UP PROBLEM [ .. Unclas

Research Center) 34 p 00,05 0197725

onv-05
/77725
397

TECHNICAL NOTE
D - 193

THE INTERPRETATION OF NONLINEAR PITCHING MOMENTS

1
1

T T H-1T D
Ad\varT oL

IN RELATION TC TH

T'I'ﬂ\

ROBLEM

by
C
U

b
.
b

By George S. Campbell and Joseph Weil

Langley Research Center
Langley Field, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON / December 1959

THE INTERPRETATION OF N89-70901

ITCHING MOMENTS IN RELATION TO




o

AS AVl I o

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-193

THE INTERPRETATION OF ﬁONLINEAR PITCHING MOMENTS
IN RELATION TO THE PITCH—UP_PROBLEM1

By George S. Campbell and Joseph Weil
SUMMARY

Practical methods are presented for predicting the longitudinal
response of an airplane to arbitrary control inputs using nonlinear
aerodynamic data. These methods are used to study the pitch-up problem
encountered by numerous present-day airplanes in maneuvering flight at
high speeds.

Of the variables affecting airplane longitudinal response character-
istiecs, pitching-moment variations with angle of attack and with Mach
number are of primary importance. The consideration of control movements
by the pilot is important for the milder pitching-moment nonlinearities,
but with a severe instability, pitch-up motion is little affected by con-
trol movements. For a given shape of the pitching-moment curve, the
severity of pitch-up is increased by either an increase in dynamic pres-
sure or & decrease in the airplane longitudinal moment of inertia.

In the event that pitch-up cannot be eliminated through geometric
modification to a particular configuration, automatic stabilization
devices may offer a means of improving marginal flight behavior.

INTRODUCTION

A large number of present-day high-speed airplanes encounter a lon-
gitudinal instability at moderately high l1ift coefficients that is com-
monly referred to as "pitch-up." The sudden and often uncontrollsable
increase in angle of attack and normal acceleration characterizing this
type of instability is always undesirable from the standpoint of the
pilot even when critical loads are not exceeded.

In order to determine the true significance of aerodynamic non-
linearities obtained during wind-tunnel investigations, 1t is necessary
to have a method for converting static nonlinear data into time histories

lSupersedes declassified NACA Research Memorandum L53102 by George S.
Campbell and Joseph Weil, 1953.



of airplane motions. Inasmuch as available methods (refs. 1 and 2) are
not sufficiently general to permit consideration of the effects of
arbitrary control motions or the variation of aerodynamic characteris-
tics with Mach number, this report presents methods of analysis suitable
for a detailed treatment of the pitch-up problem. Application of the
methods derived is directed toward a study of some of the factors
affecting pitch-up behavior, such as shape of pitching-moment curve,
control movement, dynamic pressure, inertia effects, and aerodynamic
damping. Brief consideration is also given to the effectiveness of
automatic stabilization devices in reducing pitch-up severity.

SYMBOLS

G6L-1

The system of axes used throughout the present report is illustrated
in figure 1 along with the directions for positive forces, moments, and
angles. All angles are measured in radians unless specifically noted
otherwise. Differentiation with respect to time has been designated by
means of a dot (or dots) above the dependent variable.

X wind axis tangent to flight path
Z wind axis normal to flight path
L lift, 1b
D drag, 1b
g pitching moment about airplane center of gravity, ft-1lb
W airplane weight, 1b
m airplane mass, slugs
T airplane thrust (assumed to act through center of gravity), 1lb
Iy. longitgdinal momeng of inertia about airplane center of
gravity, slug-ft
v forward velocity, ft/sec
t time, sec
a angle of attack, measured from thrust axis

y flight-path angle
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airplane attitude, o + y

1ift coefficient, 2L/pV2S

drag coefficient, 2D/pVeS

moment coefficient, 2Mcg/pV2SE

dimensionless weight parameter, 2W/pV128
relative density, m/pST
dimensionless thrust parameter, 2T/pV;ZS
dimensionless velocity, V/V;
Mach number, V/a
speed of sound in air, ft/sec
airplane time factor, m/pSV;, sec

pVIESE radians
dynamic-response parameter, y

2Ly~ sec?

density of air, slugs/ftJ
wing area, rt2

mean aerodynamic chord, ft
stabilizer deflection

elevator deflection

oCyy
dqc/2v

damping derivative,

Cy

damping derivative —
7 6z /2v

pitching velocity, de/dt

normal-load factor (ratio of the aerodynamic force normal to
the angle-of-attack reference to the airplane weight)




dimensionless radius of gyration, \/Iy/m.'c"2

downwash angle
damping parameter, equation (8), sec~l
dimensionless restoring moment, equation (9)

local slope of 1lift curve, dCLo/da

autopilot contribution to control deflection
altitude, ft

minimum drag coefficient

drag due to 1lift

Subscripts:

1

o

initial value
curve defining static variation of coefficients Cpy, Cy,

and Cp when controls are fixed in their initial posi-
tions itl’ Bel

partial derivative with respect to iy

partial derivative with respect to bg

DERIVATION OF METHOD

Basic Equations of Motion

Application of Newton's laws provides the basic longitudinal equa-
tions of motion of an airplane having three degrees of freedom and a
system of wind axes (fig. 1):

. av
-W -D+ =m —
siny - D+ Tcosa=m It
Wcosy—L-Tsinu,=-deE—Z > (1)
2

d=e

Mg = I, —5

g Y 312

CR)-T
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After rewriting equations (%) in terms of convenient parameters
defined in the section entitled Symbols," the equations become

-

W' sin y - uCp + T' cos a = 2mi

W' cos 7y - u2CL - T' sin a = -21uy & (2)

weln =7 + & )

By treating v and Tt as constants, the assumption is implicitly made

that changes in mass, inertia, and air density may be neglected during
the maneuver,

For calculation purposes, it is necessary to expand the aerodynamic
coefficients Cp, CL, and Cpm into terms representing the separate

effects of static force and moment characteristics, control-surface
deflections, and airplane damping:

Q

(3a)

=)
|
(]
o
(o]
+
Q
o
|
._l
ct
t
=
':+
"
N’
+
&
[¢)]
4
m
]
o
o0
[
N’

o =Cg + CLit(_it - itl> + Clse@e - sel> (3b)

Cn = Cmg + Cmg, (1t = 1t)) + Cmgo(Be - Bey) + 5;i—u@mqé + cmdci> (3c)

Whenever necessary, additional terms may be added to equations (3) to
account for such effects as 1ift and drag due to pitching and plunging
motions, nonlinear variations of Cp with control movement, and so
forth. The stability derivatives appearing in equations (3) may have
arbitrary variations with o« and M, and the control inputs it and Be
are functions of the variables which influence a pilot's response, such
as n, a, M, t, and so forth.




After substituting equations (3) into (2), the set of three siml-
taneous differential equations for the unknowns a, 7, and u takes
the form

-W' siny - u2l§§o + CDit(}t - itl) + CDBe(ée - Beli] + T' cos a = 21

(ka)

W' cos y - ualg%b + CLit(?t - itl) + Clee<§e - Selé] - T' sin a = -21uy
~ (4b)

" E% : Cmit(it " Ley) + Ong (B - sélﬂ ! ,ﬁyz Em 7t

(Ong + %)“:l =7 +a (kc)

Equations (4) may be solved by using numerical procedures such as the
Runge-Kutta method described in reference 3. Having solved for a and
u, the normal-load factor may also be calculated by using the relation

(CL cos a + Cp sin d)uz

ey (5)

n

where Cp and Cp are given by equations (3b) and (3a), respectively.

Experimental values. of the damping derivatives required in equa-
tions (4) are seldom available without limitations imposed by either
low speeds (refs. 4 to 6) or low lift coefficients (refs. 7 and 8). For
airplane configurations having horizontal tails} however, the damping
derivatives at high 1lift can be estimated by using static wind-tunnel
measurements of Cmit and de/da, as pointed out in reference 9. For

tailless configurations, it may be necessary to use low-1lift damping
derivatives until experiment provides more reliable information.

) arr
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Simplified Equations of Motion

Even with the use of present-day high-speed digital computers, the
time involved in solving equations (4) may be excessive. Moreover, the
mathematics of the problem must be considerably simplified if it is to
lead to a physical understanding of pitch-up.

The basic approach in the simplified calculation method is to obtain
solutions for a and y from a two-degree-of-freedom system involving
approximate forms of equations (4b) and (4c). The remaining equation (ha)
is then used to provide an approximate value of the speed variation u(t).

A major assumption underlying derivation of the equations describing
two-degree-of-freedom motion is that the change in speed during the
maneuver may be neglected. In addition, the 1lift equation (4b) may be
further simplified if the tail 1lift and the Z-component of airplane.
thrust are neglected and if the flight path angle is sufficiently small
so that cos y may be taken as unity. With these assumptions, the
equations of motion for two degrees of freedom become

—~~
N
&

N——

CL, - W =27y

v Emo + Cmit(it - itl) + cmae(ae - 561)] + ﬁqu& +

(Cmq + Cnh)u] =y +a (6b)
vwhere the aerodynamic parameters are now considered functions of a only.

The first of these expressions may be substituted into the second so
as to eliminate y and provide a single equation for angle of attack

@+ ba+ vk = VE%Ht(it - itl) + Cmse(be - Bel§] (7)

in which

b= El?EIu - aca(mq * Cm«'z)] (8



k=-Cmo

- cmq(cf:" _ w'> (9)

n

Although the two terms comprising the damping coefficient b are gener-
ally of comparable magnitude, the second term in the expression for k
_ may in most cases be neglected so that equation (7) becomes

d+bd - VO = VEmit(it - itl) + Cmse(ae - 5e1>:] (10)

Once the time history of o has been calculated from equation (10)
(by using the numerical method of Runge-Kutta, for example), pitching
velocity and flight-path angle may be obtained from approximate formulas
derived from equation (6a):

q = 21_T<CLO - W') +a (11)

t
7 =71+ -2-1;/; (cr, - W')at (12)

Although, if necessary, equation (4a) may be integrated numerically
in order to provide the speed variation during a maneuver, an approximate

form of this equation

ucho = -21i (13)

may be integrated by simple quadrature

u =

()

1
t
1+ jL'JF Cp_ dt
21'0 (o}

G6L-1
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Equation (14) has been found useful for calculating the speed loss during
pitch-ups at moderately high speed, in which the neglected terms are of
secondary importance.

Inasmuch as equation (5) for normal load factor requires no simpli-
fication, approximate relations have been developed for all parameters
obtainable from the more complicated equations of motion.

RESULTS AND DISCUSSION

Reliability of Calculation Methods

Comparison between basic and simplified methods.- Two methods for
calculating the longitudinal response of an airplane to arbitrary con-
trol motions have been derived in the previous section. (See egs. (4)
and (10).) The simpler method, equation (10), was developed primarily
for studies in which the aerodynamic characteristics can be considered
invariant with Mach number. In order to determine whether the simpler
methed provides results in agreement with the more exact solution, time-
history calculations of identical pull-up maneuvers have been made for a
hypothetical airplane configuration having a region of longitudinal insta-
bility at moderately high 1ift coefficients. The aserodynamic character-
istics used in the calculations sre summarized in figure 2, and the
results of the longitudinal response calculations for a ramp-type-
stabilizer motion are presented in figure 3.

It is seen that the simplified method provided results that are in
good agreement with the more exact method. Not only does the more approx-
imate method reduce the computing time by a factor of 3 or more, but it
also facilitates understanding of the relative importance of the various
parameters affecting the motion.

In addition to providing a comparison of results obtained by using
the simplified and more refined methods of calculation, figure % illus-
trates the typical behavior of airplanes having pitch-up. The most
apparent characteristic of the pitch-up motion is the sudden increase
in angle of attack occurring near the angle at which the static pitching-
moment curve becomes unstable. The increase in normal acceleration
accompanying the change in a 1s softened as a result of the reduction
of lift-curve slope with angle of attack. A further reduction in normal
accelerstion is produced by the loss of forward speed during the maneuver.
However, no matter how gradual the build-up of normal acceleration during
pitch-up, pilots object to a rapid change of airplane attitude, especially
if the change is uncontrollable.
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Comparisons between calculated and flight-test results.- A number
of comparisons between calculated and flight-measured time histories
are shown in reference 10 for the Bell X-5 airplane. The simplified
equations of the present paper were used in the calculations together
with the measured wind-tunnel results. Satisfactory agreement was
shown between the computed and flight-test results for the various
parameters defining the motion (see ref. 10).

Study of Some of the Factors Affecting Pitch-Up

Control motion.- The effects of varying initial rate of control
deflection are presented in figure 4 for an airplane configuration
having unstable pitching-moment characteristics in the angle-of-attack
range between 8° and 16°. (See table I for other parameters used in
calculations.) It is evident from the results that for a given change
in absolute control deflection there was practically no effect of
varying the rate of control application on the maximum values of either
a or a. For maneuvers in which control motion ceased at a given
angle of attack (a = 14°), however, the peak values of o« and & were
somewhat higher for the more rapid maneuvers as a result of the larger
final control deflection. The time histories in the rest of this report
have been calculated for gradual pull-up maneuvers in which the initial
stabilizer rate is 1 or 2 degrees per second.

Another point of interest concerns the pilot's ability to arrest
the motion of the airplane once aware of the onset of pitch-up. The
critical dependence of the amount of overshoot on the point at which
corrective control is applied is illustrated in figure 5 where the
vertical ticks on the response curves indicate the start of corrective
control. For an airplane having the pitching-moment characteristics
assumed, it would appear that if corrective control were deferred until
pitch-up was apparent, there would be little chance of avoiding a large
overshoot. In order to prevent large overshoot for such a severe
instability, corrective control would have to be applied at or before
the angle of attack for which the pitching moment becomes unstable -
which 1s very unlikely unless a warning such as the onset of buffeting
is given slightly in advance of pitch-up.

The effect of varying the rate of corrective control is shown in
figure 6. For these maneuvers the pilot was assumed to apply corrective
control about 1 second after initiation of pitch-up. The results indi-
cate that only a very rapid rate of corrective control reduced the peak
angle by an appreciable amount. Note also that with corrective control
the airplane enters the unstable pitching-moment region from the opposite
direction and executes an abrupt pitch down.' One such motion encoun-
tered in flight was of sufficient severity to cause the airplane to
reach -3g. (See ref. 11).

G6L-1
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Shape of the pitching-moment curve Cp = f(a).- The results of
dynamic-response calculations made to investigate the influence of steep-
ness and extent of static instability on the pitch-up behavior of an air-
plane are presented in figure 7. A ramp-type control motion was used for
the calculations, the stabilizer variation with time being identical for
all cases. Additional parameters used in the calculations are presented
in table I. The time histories of figure 7 show the expected increase in
severity of pitch-up with increased steepness and extent of instability.
A mild but broad static instability is seen to be equivalent to a steeper
instability of less breadth.

In order to investigate the interrelation between the shape of the
pitching-moment curve and corrective control, the time histories of fig-
ure 8 were calculated by using the three variations in pitching-moment
shape shown in the figure. The vertical ticks on the response curve
indicate the point at which the pilot attempted to arrest the motion
either by holding the control fixed or by applying corrective stabilizer
at a rate of 4 degrees per second. It is seen from figure 8 that
although corrective control had little effect on the severity of pitch-up
for the pitching moment with a region of pronounced instability (curve A),
the same rate of control movement effected a marked reduction in the
maximum angle of attack for the milder instability (curve B). However,
curve B cannot be considered satisfactory since an airplane with such
pitching moments would require the constant attention of the pilot to
prevent inadvertently reaching high angles of attack during maneuvers.

Dynamic response paremeter v.- Inasmuch as both static pitching

moments and goggnts due to control input are multiplied by the fac-
8]

tor v = :g§—§s in equation (lO), it would appear that Lhis parameter
could have ag important bearing on the pitch-up motion of an airplane.
In order to verify the importance of the response parameter v, the time
histories of figure 9 were calculated by using a pitching-moment curve
having a region of neutral stability at moderate angles of attack. It
was assumed that the pilot, in making a gradual pull-up, desired to
arrest the airplane motion at an angle of attack of about 8°. However,
because of control lag and reaction-time delay, it was further assumed
that 1/2 second elapsed before the control motion was either stopped or
reversed. The results of the time-~history calculations indicate that
for a response factor v of 16 (representative of a fighter-type air-
plane loaded primarily along the fuselage and flying at altitudes of
30,000 to 40,000 feet at transonic speed), the application of correc-
tive control caused an appreciable reduction in the amount of overshoot.
For a value of v = 64 (representative of a fighter-type airplane
loaded primarily along the wing), the motion built up so rapidly that
corrective control was completely ineffective in reducing the peak
angle attained.
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Damping parameter b.- The effect of a reduction in damping on the
motion of a configuration having the same pitching-moment curve as used
in figure 9 is presented in figure 10. Damping A was used in previous
calculations and is representative of the damping for an airplane with
a horizontal tail. Damping B represents only the wing contribution Clu

to the damping and is therefore somewhat representative of a tailless
airplane.

The results of the calculations show that a marked reduction in
damping only slightly increased the maximum rate a and the peak angle
attained during the pitch-up. The general character of the response
curve was little affected by the change in damping considered in this
calculation.

Shape of the pitching-moment curve Cp = f(a,M).- In previous para-
graphs, the importance of shape of the pitching-moment curve was discussed
for cases in which Cp was dependent only upon angle of attack. In cer-
tain instances, however, the airplane pitching-moment characteristics may
be significantly affected by changes in Mach number during a maneuver as
well as by angle of attack. For example, during a maneuver at transonic
speeds, the airplane may slow down rapidly enough so that a forward
shift in aerodynamic-center position due to Mach number change can
cause pitch-up. In order to investigate the importance of this type of
pitch-up, the pitching moments shown in figure 11 were used to calculate
the time histories presented in figure 12; the additional parameters for
these calculations are given in table II. For case A (fig. ll), linear
pitching-moment curves were assumed along with an aerodynamic-center
shift consistent with representative experimental results. For case B,
this same type of aerodynamic-center shift was superimposed on a non-
linear variation of CmO with a. Using these pitching-moments, time

histories of angle of attack and Mach number (fig. 12) were calculated
for a stabilizer input in which the pilot was assumed to stop moving
the control when he reached 11.50 angle of attack.

With linear pitching-moment curves (case A), the angle of attack
response at first tended to follow the control motion (in the vicinity
of t = L4 seconds), but the changing moment characteristics accompanying
the decrease in Mach number finally resulted in a divergence in angle of
attack. However, the divergence built up rather slowly so that there
was less than 2° overshoot after the application of corrective control.
The controllability of this type of pitch-up is probgbly critically

oV, 2SE
dependent upon the dynamic-response parameter v = ———— which was
radians . 2Iy :
19.2 5 for the results of figure 12. For case B, the pitch-up
sec

was more abrupt than for case A as a result of the nonlinearity of Cmo
with angle of attack.

G6L-1
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In more general terms, the results indicate the importance of eval-
uating pitching moments not only on the basis of their variations with
angle of attack but also from a consideration of changes in aerodynamic-
center position, trim, and overall shape of the pitching-moment curve
with Mach number. What might appear to be a mild nonlinearity at a
constant Mach number could result in severe pitch-up when the airplane
undergoes rapid speed changes.

Automatic Stabilization Devices

Although certainly desirable, it may not always be practical to
correct an airplane pitch-up tendency through geometric modification.
In this eventuality, the use of an autopilot may offer a means of
obtaining acceptable maneuvering characteristics.

The manner in which an autopilot changes stability is shown by the
following equation:

@ + bd - Wn, = vcmit Kit - itl> + Lgﬂ (15)

where (it - itl> is the control contributed by the pilot and 1it* by the

autopilot. The last term on the right side of equation (15) is used to
feed artificial stability into the system.

The autopilot contribution required for a linear angle-of-attack
response (4 = Constant) may be calculated by substituting the desired
response

@ =a) + &t (16)

into equation (15) and solving for it*

1g* = o o (it - 1tl> (17)

In figure 13, results of calculations using equations (16) and (17)
are presented for an airplane having a static instabllity in the moderate
angle-of-attack range. The autopilot contribution it* necessary to
produce a linear angle-of-attack response for a linear control input by
the pilot is seen to have a gradual variation with time.
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The variation of 1it* with o obtained from the idealized auto-
pilot calculation (fig. 13) suggests the possibility of using an auto-
pilot sensitive to angle of attack to eliminate pitch-up. Calculated
maneuvering characteristics of an airplane incorporating this type of
autopilot are presented in figure 14 and compared with the motion of
the basic airplane. For these calculations, it was assumed that the
autopilot contribution 1iy* varied linearly with angle of attack, and
that this contribution was simply superimposed on the pilot's arbitrary
control movement. The results show that with the autopilot operating,
the alrplane followed the pilot's control movement with no indication
of pitch-up.

Although the calculations show that an autopilot could be expected
to correct pitch-up even for a severe static instability, the primary
value of such a device might well be that of improving the response
characteristics of an airplane having a mild form of pitch-up. Then,
failure of the automatic stabilization system would not lead to destruc-
tion of the airplane.

There has been no attempt in the present investigation to make a
detailed study of automatic stabilization systems. Other types of auto-
pilots (such as devices sensitive to pitching velocity) or combinations
of types may offer possible means of controlling pitch-up.

CONCLUSIONS

Methods have been derived by which time histories of longitudinal
motions can be calculated for configurations having arbitrary nonlinear
pitching-moment characteristics and control inputs. Good correlation
has been obtained between time histories predicted using the methods of

this report and those measured in flight for an airplane having pitch-up.

From a study of the pitch-up problem using the methods derived, the
following conclusions may be made:

1. Of the factors affecting the pitch-up motion of an airplane,
shape of the static pitching-moment curve is of primary importance.
Once an airplane enters a region of pronounced instability, the airplane
pitch-up motion is, in general, little affected by control movements
by the pilot.

2. The amount of control which a pilot has over airplane motion
during pitch-up is strongly dependent upon the dynamic-response param-
_ DV1_2SE

eIy

eter 1%

» Which represents the ratio of aerodynamic moments to

G6L-1
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the airplane moment of inertia. For a given shape of pitching-moment

curve, an increase in the value of v reduces the controllability of
the pitch-up.

3. If pitching-moment variations with Mach number are sufficiently

abrupt, pitch-up can result even in the absence of nonlinearities with
angle of attack.

4. In the event that satisfactory pitching-moment characteristics
cannot be obtailned from geometric modifications to a configuration, the

use of automatic stabilization devices offers a possible means of con-
trolling pitch-up.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., August 25, 1953.
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TABLE I
STANDARD SET OF PARAMETERS USED FOR TIME HISTORY CALCULATIONS
[?xcept where otherwise noted, the time histories in this report were

calculated by using the simplified equation of motion (10) and the
following standard set of parameter{j

a, deg b, sec~l Moo 0.85
0 hp, ft . . . . . . | 30,000
Dy 0-14 1.71 W/S, 1b/sq £t . . . 70
H 16 1.45 K 0.9
18 1.11 e
A o 11.3
20 9L C deg-1 -0.02
) 2’-{» .6)+ mit) g e o & o .
28 A5 v, radians/sec® . . 16.0
32 .29
36 | .16
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TABLE II

PARAMETERS USED FOR CALCULATING TIME HISTORIES OF FIGURE 12
I:CDO - CDmin + ACD j

Cpyy, = 0-015 + 0.125(M - 0.9); 0.9 SMS 1.%]

) M e e e e . 1.1
a, deg | ®Lo | &CD Cmg * CT% hp, £t « 0 v 0 0 .. 30,000
radians W/S, 1b/sq ft « . . . 80
o . o ol -8.80 ;gs, lb/sq ft . . . . 2h.t
L. 0.24 | 0.015 -8.80 | |F o T
8 ..|048|0.060| -8.80 o et L] oo
12 . . [0.72]|0.136 -8.80 it? N
16 . . |0.92] 0.231 -6.96 Cry » deg™ - « . . . 0.01
20 . . |1.04|0.326 | -5.87 c t o
24 . .}1.08{0.k07| -3.30 Dig =+ ==
28 . . |1.08| 0.4k -3.30 Cmg s radians~1 . . . -5.5
52 . . |1.08]0.545 -3:50 v, radians/sec? . . . 19.2

7 v




L-795

19

Relative wind

Tangent to flight path

Horizontal )
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0
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de

§‘

Z

Figure 1.- System of wind axes and directions for positive forces, moments,
and angles. '
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Figure 2.- Aerodynamic characteristics and arbitrary parameters used for
calculating the time histories of figure 3.
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Figure 3.- Comparison of time histories calculated by using basic and
simplified equations of motion.
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Figure 4.- Effect of initial rate of control deflection on pitch-up behavior.
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Figure 5.- Effect on pitch-up of the time at which corrective control is
applied. ’
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Figure 6.- Bffect on pitch-up of the rate of corrective control application.
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_Figure T.- Effect 0f steepness and extent of static instability on
pitch-up behavior.



26

o /10 20 30
Q,deg

1, sec

Figure 8.- The interrelated effect of pltching-moment shape and corrective-
control motion on pitch-up behavior.
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Figure 11.- Static pilteching moments used for calculating time histories
of figure 12.
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Figure 12.- Effect of a transonic aerodynamic-center shift on airpla: =

dynamic response characteristics. v = 19,2 radian
sec
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Figure 135.- Autopllot characteristics required to produce linear dynamic

response characteristics.
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Figure 14.- Effectiveness of an autopilot sensitive to angle of attack

in controlling pitch-up.
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